ICT in Education Toolkit
Version 2.0
photo of girl at chalkboard
Toolkit blueprint Toolkit Use Toolkit Access Reference Handbook Search Handbook Toolkit Library

ICTs for Education: Resources
1 Background
2 The Potential of ICTs
  Expanding Educational Opportunities & Increasing Efficiency
  Enhancing Quality of Learning
  Enhancing Quality of Teaching
  Faciliating Skill Formulation
  Sustaining Lifelong Learning
  Improving Policy Planning and Management
  Advancing Community Linkages
3 From Potential to Effectiveness

ICTs for Education: A Reference Handbook
1 Decision Makers Essentials
2 Analytical Review
3 Resources
4 PowerPoint Presentation
  2.2 Enhancing Quality of Learning

Resource 2.2.1 - The Value of Tailored Instruction [24]

Technology-based Instruction

An argument for technology-based instruction may be roughly summarized as the following:

  • Tailoring instruction to the needs of individual students remains an instructional imperative. Despite heroic efforts to the contrary, however, today's classroom instruction does not achieve this.
  • Tailoring instruction to the needs of individual students requires very low teacher-to-student ratios—specifically the one-to-one ratios found in individual tutoring. Absent dramatic changes in public policy, such individualization remains both an instructional imperative and an economic impracticality.
  • Technology-based instruction can make this imperative affordable and feasible.
  • Technology-based instruction is more effective than current instructional approaches across many subject matters, because of its intense interactivity and individualization.
  • Technology-based instruction is generally less costly than current instructional approaches, especially when many students and/or expensive equipment or instrumentation are involved.
  • Technology-based instruction will become increasingly affordable and instructionally more effective.

The Value and Affordability of Tailored Instruction

The argument for technology-based instruction usually begins with an issue that is separate from the use of technology. It concerns the effectiveness of classroom instruction, involving one instructor for 20-30 students, compared to individual tutoring, involving one instructor for each student.

Bloom (1984) combined findings from three empirical studies comparing one-on-one tutoring with one-on-many classroom instruction. It was not surprising that such comparisons showed that the tutored students learned more; however how much more they learned was a surprise. Overall, it amounted to two standard deviations of difference in achievement. This finding means, for example (and roughly), that, with instructional time held fairly constant, one-on-one tutoring raised the performance of mid-level 50th percentile students to that of 98th percentile students. These and similar empirical research findings suggest that differences between one-on-one tutoring and typical classroom instruction are not only likely, but very large.

Why then do we not provide these benefits to all students? The answer is straightforward and obvious. With the exception of a few critical skills, such as aircraft piloting and surgery, we cannot afford it—or choose not to. The primary issue is cost.

Can computer technology help fill the gap between what we need and what we can afford? To answer this question, we should examine what accounts for the success of one-on-one tutoring. Fundamentally, its success appears to be due to two capabilities.

  • Tutors and their students can engage in many more interactions per unit of time than is possible in a classroom.
  • Tutors can adapt (individualize) their presentations and interactions on demand and in real time to the needs of their students.  

Interactive, computer-based technologies can provide both of these capabilities.


With regard to the first tutorial capability (intensity of instructional interaction), Graesser and Person (1994) reported the following:

  • Average number of questions by a teacher of a class in a classroom hour: 3
  • Average number of questions asked by a tutor and answered by a student during a tutorial hour: 120–145
  • Average number of questions asked by any one student during a classroom hour: 0.11
  • Average number of questions asked by a student and answered by a tutor during a tutorial hour: 20–30

Is this level of interactivity found in technology-based instruction? One study found that students taking reading and arithmetic instruction were answering 8–10 questions a minute (Fletcher, in press). This level of interactivity extrapolates to 480–600 such questions an hour, if students sustained this level of interaction for 60 minutes. These students worked with the computer-based materials in 12-minute sessions, which extrapolates to 96–144 individually selected and rapidly assessed questions the students received each day for each subject area. This level of interactivity is certainly comparable to what they would receive in one-on-one tutorial instruction. Similar findings have been reported elsewhere.


Tutors can and do adjust the content, sequence, and difficulty of instruction to the needs of their students. These adjustments affect pace—the rate or speed with which students proceed through instructional material.

Differences in the speed with which students learn are not surprising, but (as with tutoring) the magnitudes of the differences are. The challenge this diversity presents to classroom instructors is daunting. They typically focus on their slower students and leave the faster students to fend for themselves. It has long been noted that technology-based instruction allows students to proceed as rapidly or as slowly as they need to.

Payoff: Time Savings

One of the most stable findings in comparisons of technology-based instruction and conventional instruction using lecture, text, and experience with equipment concerns instruction time savings. Studies have shown that, overall, it seems reasonable to expect technology-based instruction to reduce the time it takes students to reach a variety of objectives by about 30%.

Payoff: Costs

Obviously, such time savings reduces expenditures for instructional resources, instructors' time, and student pay and allowances, as in the case of industrial training. These cost savings can be substantial

Instructional Effectiveness

Do these savings in time come at the expense of instructional effectiveness? Research data suggest the opposite. An aggregation of many studies—"meta-analysis" (analysis of analyses)—produced an estimation of effect sizes. Roughly, effect sizes are normalized measures found by subtracting the mean from one collection of results (e.g., a control group) from the mean of another (e.g., an experimental group) and dividing the resulting difference by an estimate of their common standard deviation (Hedges and Olkin, 1985). Because they are normalized, effective sizes can be averaged to give an overall estimate of effect from many separate studies undertaken to investigate the same phenomenon.

Figure 2.2.1 shows effect sizes from several reviews of studies that compared conventional instruction and technology-based instruction.

Figure 2.2.1- Effect Sizes for Studies Comparing Technology-Based Instruction with More Conventional Approaches

"Computer-based instruction" summarizes results from 233 studies that involved straightforward application of computer presentations that used text, graphics, and some animation—as well as some degree of individualized interaction. The effect size of 0.39 standard deviations suggests, roughly, an improvement of 50th percentile students to the performance levels of 65th percentile students.

"Interactive multimedia instruction" involves more elaborate interactions adding more audio, more extensive animation, and video. These added capabilities evidently increase achievement. They show an average effect size of 0.50 standard deviations, which suggests that 50th percentile students improve to the 69th percentile of performance.

"Intelligent tutoring systems" involve a capability that has been developing since the late 1960s (Carbonell, 1970), but has only recently been expanding into general use. In this approach, an attempt is made to directly mimic the one-on-one dialogue that occurs in tutorial interactions. The important component of these systems is that computer presentations and responses are generated in real time, on demand, and as needed or requested by learners. Instructional designers do not need to anticipate and store them in advance.

 This approach is computationally more sophisticated and more expensive to produce than is standard computer-based instruction. However, its costs may be justified by the increase in average effect size to 0.84 standard deviations, which suggests, roughly, an improvement from 50th to 80th percentile performance. In five empirical comparisons involving a single intelligent tutoring system, SHERLOCK, Gott, Kane, and Lesgold (1995) found an average effect size of 1.05 standard deviations, which suggests an improvement of the performance of 50th percentile students to the 85 percentile.

The more extensive tailoring of instruction to the needs of individual students that can be obtained with generative, intelligent tutoring systems is expected to increase. Such systems will raise the bar for the ultimate effectiveness of technology-based instruction.


The above research data, along with other findings, suggest a conclusion that has been called the rule of "thirds." This conclusion states that technology-based instruction will reduce the costs by about a third and either increase achievement by about a third or decrease time needed to reach instructional objectives by a third.

In sum, the above review suggests the following:

  • Technology-based instruction can increase instructional effectiveness.
  • Technology-based instruction can reduce time and costs needed for learning.
  • Technology-based instruction can make individualization affordable, thereby helping to ensure that all students learn.


  • Bloom, B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13, 4-16.
  • Carbonell, J. R. (1970) AI in CAI: An artificial intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, 11, 190-202.
  • Fletcher, J.D. (in press) Technology, the Columbus effect, and the third revolution in learning. In M. Rabinowitz, F. C. Blumberg & H. Everson (Eds.) The Impact of Media and Technology in Instruction. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Gott, S. P., Kane, R. S., & Lesgold, A. (1995) Tutoring for Transfer of Technical Competence (AL/HR-TP-1995-0002). Brooks AFB, TX: Armstrong Laboratory, Human Resources Directorate.
  • Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal, 31, 104-137. Hedges, L.V. & Olkin, I. (1985) Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.

Resource 2.2.2 - Radio and Television Programs [25]

The Case of Ethiopia

Ethiopia has a rich experience in using radio and television to support primary, secondary and nonformal education, spanning more than three decades. The Educational Media Agency (EMA) of the Ministry of Education, which has led this effort, currently manages an extensive broadcasting infrastructure dedicated to supporting education. EMA has large facilities, employs approximately 160 persons, operates 11 transmitters, each with two channels, throughout the country, and runs 12 recording studios at the center and the regions, with more construction planned in the coming years.

Radios, including 500 solar-powered sets, have been distributed to almost all schools nationally, and 800 color televisions have been sent to almost all secondary schools.

The radio and television programs enrich education in the following manner:

  • They improve the quality of primary education by producing at the regional level radio programs in local languages for all primary school grades in most subjects.
  • They strengthen the teaching of English through development of interactive radio instruction (IRI).
  • They improve the quality of secondary education and reduce regional disparities by producing radio and television programs in many secondary school subjects.
  • They improve the qualifications of teachers by creating new distance education programs to upgrade underqualified primary school teachers.

The Venezuelan Experience with Interactive radio for Math [26]

The Interactive Mathematics for Basic Education program is designed to raise the quality of mathematics teaching in the first phase of Basic Education in Venezuela, which corresponds to grades 1–3. The program was developed by the National Center for the Improvement of Science Education, CENAMEC, under the auspices of the Ministry of Education. It was financed at first by the Venezuelan private sector, then by the World Bank during the period of its greatest expansion.

The program was created to help resolve the problem of low levels of quality learning in this subject. Additionally, given that this problem is greatly tied to deficiencies in training and updating math teachers, the program was devised as a system of permanent training for teachers using their own resources. To accomplish these objectives, the program offers to each participating classroom a radio, a teacher's guide, a package of complementary materials, the daily transmission of a radio program, Matemática Divertida (Entertaining Mathematics), teacher training, and follow-up.

The typical Interactive Mathematics lesson or "encounter" contains three important aspects: preparation, listening to the radio program, and carrying out activities suggested in the guide. During preparation, the teacher organizes the students and ensures that they have the necessary materials ready for the transmission. During the radio program, varied and intensive activities are carried out, monitored by the teacher. To wrap up the "encounter," the teacher conducts evaluation and reinforcement activities, going more in depth as suggested in the guide, in some cases supported by complementary materials the teacher receives.

Comparative studies of the children's learning between an experimental group and a control group indicated the following:

  • First trial of first grade. Initially, the students in the experimental group were below the level of the control group students. By the end of the year, the experimental group had reached the control group, achieving learning gains that were significantly greater than those of the control group.
  • Measurement of knowledge of children entering fourth grade. A study was done comparing fourth grade students who had studied under the Interactive Mathematics system and others who had followed traditional methods in the Federal District and the states of Lara and Mérida. The experimental group had significantly higher results than the control group.

Cost figures are:

  • Development cost per program: US$3,000
  • Recurring cost per school year per classroom or section
    • Follow-up and training: US$25
    • Radio transmissions: US$9.37
    • Radios and teacher's guides: US$9.6
    • Complementary materials and batteries: US$9
    • Total recurrent cost per class or section: US$53
    • Total recurrent cost per student :US$1.76

The Case of Guinea [27]

The Republic of Guinea provides an example of how a multichannel learning approach and IRI can and do improve instruction on a nationwide scale. To reach the roughly 22,000 primary teachers in need of support and in-service training, a series of materials has been produced, each of which relies primarily on a different "channel" to communicate important concepts and topics to students and teachers. There are 66 IRI programs per grade for every grade from 1 to 6. The children access this learning channel three times a week during their French and math classes. In addition, there are materials that rely primarily on "print" to channel information toward the student: student workbooks for children in grades 2–6, and short-story readers for children in grades 1–2. Finally, there is a primarily visual channel: color posters, of which every primary school classroom has a set.  

The addition of IRI programs and print materials to the teachers' spoken explanations of French vocabulary and basic math provide the children with a second auditory learning "channel" (the IRI programs); a more stimulating visual "channel" than their own notebooks (the color posters); and a number of kinesthetic "channels" supplied by the activities recommended in the IRI programs, on the backs of the posters, and in the teacher's editions of the workbooks and readers. All of the different materials are specific to the Guinean context and use objects/examples from the students' surroundings, thereby drawing on the learning "channel" to which students are exposed the most: the one that links them to their homes, families, and communities.

Resource 2.2.3 - The Case of IVEN

Science and mathematics are supposed to provide conceptual and technological tools that allow people to describe and explain how the world works with power and precision, and to achieve a richer understanding and appreciation of the world they experience. However, in most cases, school conditions have reduced the wonderful, dynamic, and multidimensional world of science into flat texts, scripted demonstrations, and occasional cookbook experiments. Similarly, the world of mathematical constructs, concepts, and relationships has been transformed into drill and practice of computations and abstract problems.

To address this problem, The Inter American Development Bank financed in 1999, the International Virtual Education Network (IVEN) for the Enhancement of Science and Mathematics Learning, a pilot, collaborative, cross-country project in Latin America. The project was designed by Knowledge Enterprise, Inc., which also acted as the International Coordinating Secretariat through early 2002.  Brazil, Peru and Venezuela participated in the program, and Argentina and Colombia did so for a short time. The project is now in its implementation stage.

The backbone of the pilot project is the development of multimedia modules for the whole science and math program for the last two years of secondary schools. This comprehensive undertaking involves setting learning standards; translating standards into teaching/learning activities; producing multimedia curricular materials; staff training; distribution, testing, and refining curricula, educational materials, and pedagogical approaches; assessing learning achievement; and evaluating programs.

IVEN carries out these activities in three phases:

Phase 1. Preparation and Capacity Building

This phase covers preparing the design, training, infrastructure, and tools that set the necessary groundwork for full-scale implementation:

  1. Strategy seminars were held with officials and project managers to orient them to the potential of the project and its benefits, prerequisites for success, implementation strategies, and long-term vision.
  2. Agreements were finalized among the parties.
  3. A design and implementation plan was prepared, including educational and instructional approaches, development of multimedia modules, institutional setup, specifications for hardware and software, profile of instructional design teams and their training program, and evaluation scheme.
  4. Instructional teams were selected and trained. Each discipline had a content team composed of master teachers and science or math education advisers as well as programmers, graphic designers, producers and Web specialists.

Phase 2. Development

This phase involves development and testing of curriculum-related multimedia modules to be applied and tested in experimental schools in the three countries:

  1. The most difficult task in the production process was to agree on a common list of modules and a common approach to developing them, because the modules are supposed to be integrated into each country's curriculum without requiring curriculum reform.
    • The first step involved reaching a consensus on the approaches to the teaching of science and mathematics. This was accomplished by highlighting these approaches in the project design, discussing them with the steering committee, and incorporating them into the production teams' training program.
    • The second step was to ask each country to translate its science and math curricula into a logical grid of teaching/learning modules. Each of these modules was to be described in terms of objectives, content, and technological tools. Each country went through this exercise and sent its results to the international coordinating secretariat.
    • The third step was to harmonize the country lists of modules, arrive at a common list, and reach agreement about distribution of production responsibilities among participating countries.
  2. Production teams have been developing modules and testing them for implementability and effectiveness.
  3. The program of modules will be tested in a limited number of experimental schools.


Phase 3. Application in schools

  1. Teachers in the pilot schools will be trained to use the technology and apply it to the above modules.
  2. Pilot schools should be equipped with the appropriate technological infrastructure.
  3. The developed and tested modules will be distributed to the pilot schools using a Web distributional platform. The modules will then be applied under experimental conditions and revised accordingly.

Phase 4. Scaling Up

The pilot phase will be submitted to a rigorous formative and summative evaluation to test for feasibility, effectiveness, and cost benefit before expanding on a larger scale.

At the end of this pilot phase, the following "products" will have been achieved:

  • A fully developed multimedia program covering the total two-year science and mathematics program
  • A trained cadre of multimedia production specialists in each participating country
  • Personnel trained in the use of science and math learning modules in all of the pilot schools
  • A physical infrastructure within schools and across countries

Once this pilot phase is completed successfully and the evaluation results are incorporated into the structure of the Virtual Network, then the Network can be scaled up over time in four directions:

  • More secondary schools in the pilot countries
  • More countries in Latin America
  • Other levels of science and mathematics education
  • Other school subjects

Resource 2.2.4 - Simulations

Examples of Web Science Simulations

  • "ExploreScience.com" includes a substantial number of simulations about building blocks, mechanics, wave motion, electromagnetism, optics, astronomy, and life sciences.  The mechanics simulations include those of two colliding masses, an inclined plane, and freefall. Users can change the variables and actually see the result.  There are no instructional guides or lesson plans to go with the simulations (http://www.explorescience.com).
  • The "Annenberg Teachers' Lab" provides interactive simulations. Although presented as a teacher preparation tool, students can also use the site (http://www.learner.org/teacherslab). 
  •  The following site provides simulations in astronomy: http://instruct1.cit.cornell.edu/courses/astro101/java/simulations.htm.

.Other Simulations [28]

The following are examples of math simulations on the Web. Many of these sites require Shockwave, Flash, and, sometimes, other plug-ins.

  • The "Mathforum" site (http://mathforum.com/varnelle/index.html) offers early primary education "activities" in basic geometry and measurement. Each activity has stated objectives, a manipulative exercise with materials widely available in schools and homes, a "technology activity" to be conducted with a colorful interactive simulation, and references to children's books that treat the same topic. This is an easy-to-use site for both teachers and students.
  • "BBC Online Education" (http://www.bbc.co.uk/education/home/) offers an all-purpose education site. It has many instructional aids, including some simulations, but the site is difficult to navigate. Clicking on "Schools" takes visitors to a page with resources organized by grade level, with links to various subjects. For instance, for the age 4–11 group, click on "MegaMaths,'" then on "World of Tables," then on "Pick a Number," then to any card shown, and then on "Patterns and Hints" to reach a dynamic multiplication table. "Table Tournament" provides a fast-paced multiplication table game with captivating graphics that, for instance, require the users to answer multiplication problems quickly before a rolling bolder crashes into them. "Tell Us Your Top Tips" offers tips on doing multiplication quickly.
  • "ExploreMath.com" (http://www.exploremath.com) offers a series of high school mathematics simulations, most of which show the relationship between equations and their corresponding two-dimensional graphs. Users can modify the equation and see how that affects the graph, or modify the graph and see how that alters the equation. This is one of the few simulations that permit the latter form of interaction. There is also a library of lesson plans that use the simulations.
  • University of Minnesota's "Geometry Center" (http://www.geom.umn.edu) offers several interactive simulations of college-level geometry. Generally users specify functions or coordinates, and then see the geometric representation. The simulation includes hyperbolic triangles, Lorenz equations, projective conics, and Teichmuller navigation. These interactive components are in the two-fold link titled, "Interactive Web and Java Applications." There are brief instructions for using the simulations, but no instructional guides or lesson plans. This site also offers downloadable software and other resources for teachers of advanced geometry. Although the site is no longer being maintained, it remains functional.
  • The "Visual Calculus" site (http://archives.math.utk.edu/visual.calculus) has an extensive set of visual resources to accompany a two-semester college course in calculus. Some of the resources are Web-based interactive simulations and some are free downloadable simulation software that can be run from individual microcomputers. Ironically, many of the simulations are of the TI-85 and TI-86 graphing calculators. Short tutorials precede the visualizations. The professor who developed this site has also posted the syllabi for the courses he teaches with these Web-based resources, so that other instructors can see how their offerings are integrated with the course.

Resource 2.2.5 - Connecting with the World

Global Learning and Observations to Benefit the Environment (GLOBE) [29]

Global Learning and Observations to Benefit the Environment (GLOBE) offers teachers and students, from kindergarten through high school, the opportunity to participate in actual scientific research. The project, open to schools around the world, focuses primarily on mapping and understanding patterns and changes in three major areas: atmosphere/climate, hydrology/water chemistry, and land cover/biology. The project, launched on Earth Day 1994, is administered by an interagency partnership that includes some of the most renowned scientific organizations in the United States: the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

GLOBE has three main objectives: to improve mathematics and science education, to raise environmental awareness, and to contribute to a worldwide scientific database about Earth. To attain these objectives, GLOBE scientists help teachers and students develop meaningful science projects, such as measuring pH in the water or analyzing temperature readings to observe changing patterns. GLOBE projects can be implemented in different ways: as part of a science class, a separate class, a club, a lunch group, or any other creative venue. In grades K–3, GLOBE teachers work with fewer than 10 children per project. Groups for older children can be much larger.

A four-year evaluation of GLOBE found that participating students perform better than do their peers in activities that require an understanding of science, including the ability to interpret data and apply science concepts. They also showed a greater appreciation of science. In addition, the project instills in the students pride in their work, which is taken seriously by scientists and community members.

Currently, about 9,500 schools in more than 90 countries participate in GLOBE, and participation continues to grow, although only a small percentage of these schools contribute data to the central database. Recent training of new GLOBE teachers in Katmandu, Nepal, drew more than 80 teachers from seven Asian countries and New Zealand. Information on GLOBE, including evaluations of the project, can be found at http://www.globe.gov.

The Jason Project [30]

The JASON Project was created to encourage scientists and students to collaborate on research expeditions using advanced communications technologies. Prominent scientist, explorer, and educator Dr. Robert D. Ballard and his visionary project have bridged the scientific and education communities by making scientific research an exciting adventure for students and teachers in the classroom, through a series of real expeditions in which scientists, teachers, and students participate.

Teachers begin the JASON Project by participating in professional development workshops, which model new methods of teaching science content using JASON's suite of multimedia tools. They guide students into the expedition by discussing novels and conducting classroom activities about the geography, history, and culture of the expedition site. Through readings, videos, and Internet chat sessions, students make personal contact with host researchers and observe how they work. Then, through a series of inquiry-based exercises—including local field studies, gathering and analyzing data, designing experiments, and building models—students emulate the field research conducted at the expedition site and conduct their own investigations. During JASON XII, for example, students have created geographic information system (GIS) maps of lava flows, classified fish species located in Hawaii's deep reefs, participated in ecological restoration projects, transformed classrooms into lava tubes, and compared aquatic data from their local site with data from sites around the country.

Throughout the year, teachers and students use several online tools, such as workshops, message boards, simulations, and contests, to facilitate year-long interactivity between scientists and the global community. One highlight of the JASON expedition is a live, two-week satellite broadcast in late winter. During the broadcast, a small group of researchers, teachers, and students (known as Argonauts) shares its discoveries from the expedition field site with classrooms all over the globe

To learn more about the JASON Project, visit www.jasonproject.org.

Resource 2.2.6 - MIT Clubhouses [31]

Computer Clubhouses are very different from most telecenters and community technology centers in that they seek not simply to teach basic skills, but to help young people learn to express themselves and gain confidence in themselves as learners. If young people are interested in video games, they don't come to the Clubhouse to play games; they come to create their own games. They don't download videos from the Web; they create their own videos. In the process, youth learn the heuristics of being a good designer: how to conceptualize a project, use the materials available, persist and find alternatives when things go wrong, collaborate with others, and view a project through the eyes of others. In short, they learn how to manage a complex project from start to finish.

The Computer Clubhouse approach strikes a balance between structure and freedom in the learning process. As Clubhouse youth work on projects based on their own interests, they receive a great deal of support from other members of the Clubhouse community (e.g., staff members, volunteer mentors, and other Clubhouse youth). There is a large collection of sample projects on the walls, shelves, and hard drives of the Clubhouses; these provide Clubhouse youth with a sense of the possible and multiple entry points through which they can start.

Consider Mike Lee, who spent time at the original Computer Clubhouse in Boston, Massachusetts. Mike first came to the Clubhouse after he had dropped out of high school. His true passion was drawing, and he filled up notebook after notebook with sketches of cartoon characters. At the Clubhouse, Mike developed a new method for his artwork. First, he drew black-and-white sketches by hand. Then, he scanned the sketches into the computer and used the computer to color them in. His work often involved comic-book images of himself and his friends.

Over time, Mike learned to use more advanced computer techniques in his artwork. He also began working with others at the Clubhouse on collaborative projects. Together, they created an online art gallery. Once a week, they met with a local artist who agreed to mentor the project. After a year, their online art show was accepted for exhibition at Siggraph, the world's premiere computer graphics conference.

As Mike worked with others at the Clubhouse, he began to experiment with new artistic techniques. He added more computer effects and began working on digital collages combining photographs and graphics, while maintaining his distinctive style. Over time, Mike explored how he might use his artwork as a form of social commentary and political expression.

As he worked at the Clubhouse, Mike Lee clearly learned a lot about computers and graphic design. But he also began to develop his own ideas about teaching and learning. "At the Clubhouse, I was free to do what I wanted, learn what I wanted," says Mike. "Whatever I did was just for me. If I had taken computer courses [in school], there would have been all those assignments. Here I could be totally creative." Mike remembers—and appreciates—how the staff members treated him when he first came to the Clubhouse. They asked him to design the sign for the entrance and looked to him as a resource. They never thought of him as a "high school dropout," but as an artist.

24 Excerpted from: J. D. Fletcher. January –March 2003. "Does This Stuff Work? A Review of Technology Used to Teach." TechKnowLogia. Available at: www.TechknowLogia.org
25 Excerpted from: Thomas D. Tilson & Demissew Bekele. May/June 2000. "Ethiopia: Educational Radio and Television. " TechKnowLogia. Available at: www.TechKnowLogia.org
26 For further details go to: Nora Ghetea Jaegerman & Victor Vásquez R. May/June 2000. "Interactive Mathematics for Basic Education : The Venezuelan Experience with IRI." TechKnowLogia. Available at: www.TechKnowLogia.org
27 Excerpted from: Andrea Bosch at al. 2002. "Interactive Radio Instruction: An Update from the Field." In Wadi D. Haddad and Alexandra Draxler (Eds.) Technologies for Education: Potential, Parameters, and Prospects. Paris: UNESCO, and Washington, DC: Academy for Educational Development.
28 Excerpted from: Gregg B. Jackson &  John Jones. March/April 2001. "Web-based Simulations for Science and Math Instruction." TechKnowLogia. Available at: www.TechKnowLogia.org
29 Excerpted from: Editorial Staff. March/April 2001. "Learning by Doing Science: Two Internet-Based Cases." TechKnowLogia. Available at: www.TechKnowLogia.org
30 Excerpted from: Bram Duchovnay. March/April 2001. "The Jason Project: The Search for the Golden Fleece." TechKnowLogia. Available at: www.TechKnowLogia.org
31 Excerpted from: Mitchel Resnick. (2002. "Rethinking Learning in the Digital Age." in The Global Information Technology Report 2001–2002: Readiness for the Networked World (GITR). Center for International Development at Harvard University. Available at: http://www.cid.harvard.edu/cr/pdf/gitrr2002_ch03.pdf


UNESCO JFIT infoDev (World Bank) AED Knowledge Enterprise
Contact Us | Acknowledgements | Terms & Conditions | Copyright © 2007. All rights reserved. Site designed and maintained by: Sonjara, Inc